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Abstract

This paper investigates the decentralized detection of spatially correlated processes using the Neyman-

Pearson test. We consider a network formed by a large number of sensors, each of them observing a

random data vector. Sensors’ observations are non-independent, but form a stationary process verifying

mixing conditions. Each vector-valued observation is quantized before being transmitted to a fusion center

which makes the final decision. For any false alarm level, it is shown that the miss probability of the

Neyman-Pearson test converges to zero exponentially as the number of sensors tends to infinity. A compact

closed-form expression of the error exponent is provided in the high-rate regime i.e., when fine quantization

is applied. As an application, our results allow to determine relevant quantization strategies which lead to

large error exponents.

I. INTRODUCTION

Consider a Wireless Sensor Network (WSN) whose aim is to detect the presence of a stochastic signal,

based on a large number of sensors. We assume that a fusion center (FC) gathers information from the

sensors and takes the final decision. Binary hypothesis tests are special cases where the FC has to decide

between two possible hypotheses H0 and H1. In this case, the celebrated Neyman-Pearson (NP) procedure

provides a uniformly most powerful test [1].

In the context of sensor networks, a large number of works have been devoted to the study of the

performance of the NP test, with the aim to design WSN with attractive detection capabilities. Most of

these works address the case where observations are independent random variables. However, the detection

of a spatially correlated process is a crucial issue in WSN applications. In this case, fewer results are

available in the literature. Chamberland and Veeravalli [2] analyse the impact of the density of sensors on
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the detection performance, when observations are correlated. In case of the detection of a Gauss-Markov

signal in noise, Sung, Tong and Poor [3] prove that for a fixed false alarm level, the miss probability of

the NP test converges exponentially to zero, and provide a closed form expression of the error exponent.

It is worth noting that in the above works, the FC is assumed to have a perfect knowledge of the

sensors’ measurements. In practice, the presence of imperfect wireless links between nodes requires to

compress/quantize data before transmission to the FC. In the past decades, numerous papers were dedicated

to the search for relevant quantization strategies for various target applications. Bennett [4] pioneered the

study of high-rate (or high-resolution) quantization for the reconstruction of scalar signals. Extension of

the works of Bennett to vector-valued observations was later achieved in [5]. On the otherhand, high-rate

quantization in the framework of statistical tests and decentralized detection was subject to much fewer

works. Gupta and Hero [6] determined the degradation of the detection performance due to quantization, in

the particular case where observations are independent and identically distributed (i.i.d.). To our knowledge,

a comprehensive analysis remains to be provided in the case of correlated observations.

In this paper, we investigate the case where sensors’ measurements are non-independent. We study the

asymptotic performance of the Neyman-Pearson detector when the number of sensors tends to infinity,

assuming that each measurement is quantized on log2(N) bits. For a fixed false alarm level, it is shown that

the miss probability of the Neyman-Pearson test converges to zero exponentially as the number of sensors

tends to infinity. Generalizing the initial idea of [6] to the non-i.i.d. case, we provide a compact expression

of the error exponent in the case of high-rate quantization i.e., when the number N of quantization levels

is large. This paper extends our previous work [7] (which was specific to scalar hidden Markov models)

to the case of an arbitrary process distribution and to vector-valued observations.

The paper is organized as follows. In Section II, we describe the observation model. We also recall

some results on NP tests and evaluate the error exponent in the ideal case where the FC has perfect access

to the measurements. Fixed-rate vector quantizers are defined in Section III. Next, we evaluate the error

exponent in the case when the decision is made using quantized measurements. In Section IV, we evaluate

the degradation of the error exponent due to quantization in the high-rate regime. We determine relevant

quantization strategies allowing to reduce this degradation. Section V is devoted to numerical illustrations.

II. NP DETECTION WITH PERFECT OBSERVATIONS

A. Observation Model

Consider two probability measures P0 and P1 on a relevant probability space. Denote by (Yk)k∈Z a

stationary ergodic process for both P0 and P1, taking its values in a bounded convex subset Y of Rd. We

associate an hypothesis (H0 and H1 respectively) to each of the two probability measures P0 and P1 and

investigate the problem of the detection of H1 vs. H0 based on a set of n observations Y1:n = (Y1, . . . , Yn).

For convenience, we assume that P0 and P1 are probability distributions of process (Yk)k∈Z on the space

(YZ, B(YZ)), where B(YZ) represents the Borel σ-field in YZ. Let U, V and W be three sub σ-algebras
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of B(YZ). Define the following conditional ψ-mixing coefficient for each i ∈ {0, 1}:

ψi(U, V|W) = sup
U∈U, V ∈V

ess sup
∣∣∣∣1−

Pi(U ∩ V |W)
Pi(U |W)Pi(V |W)

∣∣∣∣

where the essential supremum is taken w.r.t. P0 and where we use the convention 0/0 = 1. The above

coefficient can be interpreted as a measure of independence between U and V conditionally to W. In

particular, it coincides with the traditional ψ-mixing coefficient ψ(U,V) when W is taken to be the whole

space B(YZ) [8]. For each n ≥ 1, we define:

ψi,n = sup
m>0

ψi(σ(Yn+1), σ(Y−m:0)|σ(Y1:n))

and ψi,0 = supm>0 ψi(σ(Y1), σ(Y−m:0)) when n = 0. In the sequel, we will generally assume that

sequence ψi,n converges to zero as n →∞. Loosely speaking, this means that for large values of n, the

present observation Yn+1 is “nearly” independent of past observations Y−m:0 conditionally to Y1:n.

We denote by E0 and E1 the expectations associated with P0 and P1 respectively, and introduce the

measure µ which coincides with the d-dimensional Lebesgue measure on Y.

Assumption 1. For each i ∈ {0, 1}, for each n ≥ 1, measure Pi[Y1:n ∈ · ] admits a density pi w.r.t. µ⊗n.

Moreover, pi(y1:n) > 0 for each y1:n ∈ Yn.

In particular, Assumption 1 implies that the probability distribution of the observations Y1:n under

hypotheses H0 and H1 respectively are absolutely continuous w.r.t. each other.

B. Likelihood Ratio Test

We now investigate the detection of H1 vs. H0 based on the perfect observation of n measurements

Y1:n. Due to the celebrated Neyman-Pearson’s Lemma, a uniformly most powerful test is obtained by

rejecting the null hypothesis when the following log-likelihood ratio (LLR)

Ln = log
p1(Y1:n)
p0(Y1:n)

is larger than a threshold, say γ. For each α ∈ (0, 1), we define the miss probability of the Neyman-Pearson

test of level α by:

βn(α) = inf{P1 [Ln < γ] : γ s.t. P0 [Ln > γ] ≤ α} .

Quantity βn(α) is a key metric for characterizing the performance of the hypothesis test. Unfortunately,

it usually does not admit a tractable closed form expression. In the sequel, we study the asymptotic

behaviour of βn(α) as the number of observations n tends to infinity. In this regime, it can be shown that

βn(α) ' exp(−nK) for some constant K given below, which we shall refer to as the error exponent.

C. Error Exponent with Perfect Observations

The evaluation of the error exponent K fundamentaly relies on the following Lemma:
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Lemma 1 ([9]). Assume that (−1/n)Ln converges in probability under H0 to a deterministic constant κ

s.t. 0 < κ ≤ ∞. Then, for any α ∈ (0, 1), (−1/n) log βn(α) → κ as n →∞.

Therefore, the proof of existence of the error exponent and its evaluation reduce to the asymptotic study

of the LLR. The following result is obtained by direct extension of the Shannon-McMillan-Breiman’s

Theorem [10].

Theorem 1. Assume that (ψ1,n)n≥0 converges to zero as n → ∞. Assume that there exists an integer

n0 ≥ 0 such that E0| log p1(Yn0+1|Y1:n0)| < ∞ and ψ1,n0 < 1. Then,

lim
n→∞

1
n

log βn(α) = −K ,

where K is the constant defined by

K = lim
m→∞

E0

[
log

p0

p1
(Y0|Y−m:−1)

]
. (1)

Proof: We can prove the following inequality, for any fixed k ≥ 0 and for each m′ ≥ m:
∣∣∣ log p1(Yk|Y−m:k−1)− log p1(Yk|Y−m′:k−1)

∣∣∣ ≤ − log(1− ψ1,k+m) . (2)

Thus (log p1(Yk|Y−m:k−1))m≥−k is a Cauchy sequence. Denote its limit by L1(Y−∞:k). Letting m′ tend

to infinity in (2) and using the triangular inequality, we obtain:
∣∣∣∣∣
1
n

n∑

k=1

log p1(Yk|Y1:k−1)− 1
n

n∑

k=1

L1(Y−∞:k)

∣∣∣∣∣
P0-a.s.−−−−→
n→∞

0 .

Under above assumptions, Equation (2) ensures that E0|L1(Y−∞:0)| < ∞. As process (Yk)k∈Z is stationary

ergodic under P0, the ergodic theorem yields:

1
n

n∑

k=1

log p1(Yk|Y1:k−1)
P0-a.s.−−−−→
n→∞

E0 [L1(Y−∞:0)] .

On the otherhand, the Shannon-McMillan-Breiman’s Theorem [10] implies that:

1
n

n∑

k=1

log p0(Yk|Y1:k−1)
P0-a.s.−−−−→
n→∞

lim
m→∞

E0 [log p0(Y0|Y−m:−1)] .

This proves Theorem 1.

III. QUANTIZATION

A. Definitions

Consider a fixed integer N ≥ 2. An N -point quantizer is a triplet (CN ,ΞN , ξN ) where CN = {CN,1, . . . , CN,N}
is a set of N cells (Borel sets of Y with non-zero volume) which form a partition of Y, where ΞN =

{ξN,1, . . . , ξN,N} is an arbitrary set of distinct elements and where ξN : Y → ΞN is a function s.t.

ξN (y) = ξN,j whenever y ∈ CN,j .

For each N, k, denote by ZN,k = ξN (Yk) the quantized measurement on log2(N) bits. Note that in

our model, all measurements are quantized using the same quantization rule. Moreover, we assume that

April 2010 DRAFT



TO BE PRESENTED AT ISIT2010 5

the quantizer (CN ,ΞN , ξN ) is known at the decision device. The aim is to decide between hypotheses H0

and H1 based on the observation of ZN,1:n.

B. Error Exponent

We define the LLR based on n quantized measurements by:

Ln,N = log
p1,N (ZN,1:n)
p0,N (ZN,1:n)

,

where for each i ∈ {0, 1} and for any set of quantization points (ξN,j1 , . . . , ξN,jn
) ∈ Ξn

N ,

pi,N (ξN,j1 , . . . , ξN,jn
) =

Pi[Y1:n ∈ CN,j1 × . . .× CN,jn
]

VN,j1 × . . .× VN,jn

, (3)

where VN,j =
∫

CN,j
dy represents the volume of cell j. Function pi,N is the pdf of the observations ZN,1:n

w.r.t. the (n-product) weighted counting measure of the points ξN,j’s.

For each α ∈ (0, 1), we denote by βn,N (α) the miss probability of the NP test of level α when

quantization is applied i.e., the infimum of P1 [Ln,N < γ] w.r.t. all γ s.t. P0 [Ln,N > γ] ≤ α. We define

for each i ∈ {0, 1}, n ≥ 1:

ψ̄i,n(CN ) = sup
m>0

ψi(σ(ZN,n+1), σ(ZN,−m:0)|σ(ZN,1:n)) .

Corollary 1. Assume that ψ̄i,n(CN ) → 0 as n →∞. Assume that there exists n0 ≥ 0 s.t. E0| log p1(ZN,n0+1|ZN,1:n0)| <
∞ and ψ̄1,n0(CN ) < 1. As n →∞, (−1/n) log βn,N (α) converges to the error exponent KN given by:

KN = lim
m→∞

E0

[
log

p0,N

p1,N
(ZN,0|ZN,−m:−1)

]
. (4)

A natural question is: How does the quantizer affect the error exponent? Unfortunately, Equation (4) is

not informative enough to directly evaluate the impact of the quantizer. Following [5], [6], we thus study

the high-rate quantization regime i.e., the case where N tends to infinity.

IV. PERFORMANCE OF HIGH-RATE VECTOR QUANTIZERS

A. Notations and Assumptions

For each N , the error exponent KN does not depend on the particular choice of the quantization alphabet

ΞN . We then assume with no loss of generality that each ξN,j coincides with the center of cell CN,j . We

introduce the specific point density ζN and the specific covariation profile MN as the piecewise constant

functions on Y respectively given by

ζN (y) =
1

NVN,j
,

MN (y) =
1

V
1+2/d
N,j

∫

CN,j

(y − ξN,j)(y − ξN,j)Tdy ,

whenever y ∈ CN,j , (j = 1, . . . , N ). Now consider a family of quantizers (CN , ΞN , ξN )N≥1.

Assumption 2. As N →∞, ζN converges uniformly to a continuous function ζ such that infy∈Y ζ(y) > 0.

MN converges uniformly to a continuous (matrix-valued) function M such that supy∈Y‖M(y)‖ < ∞.
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We will refer to ζ as the model point density of the family (CN , ΞN , ξN )N≥1. It represents the fraction of

cells in the neighborhood of a given point y. Function M will be refered to as the model covariation profile.

It provides information about the shape of the cells. Intuitively, high-rate quantizers should be constructed

in such a way that ζ(y) is large at those points y for which a fine quantization is essential to discriminate

the two hypotheses. Theorem 2 below provides a more rigorous formulation of this intuition. We need

further assumptions. For each j ∈ {1, . . . , N}, denote by dN,j = supu,v∈CN,j
‖u− v‖ the diameter of

cell j.

Assumption 3. The following properties hold true.

1) For all N , supj dN,j ≤ Cd/(N1/d) for some Cd > 0.

2) For any n ≥ 1, y1:n 7→ pi(y1:n) is of class C3 on Yn.

3)

sup
n≥1, 1≤k,l,r≤n, 1≤h,i,j≤d

∥∥∥ ∂3 log pi

∂y
(h)
k ∂y

(i)
` ∂y

(j)
r

∥∥∥
∞

< ∞ .

4) There exist constants Ce, ε > 0 and an integer n0 ≥ 0 s.t. for each i ∈ {0, 1}, each N ≥ 2 and

each n ≥ n0,

max
(
ψi,n, ψ̄i,n(CN )

) ≤ Ce/(n6+ε) .

5) For each i ∈ {0, 1} and each −m′ ≤ −m ≤ 0 ≤ k:

‖∇y0 log pi(Y0:k|Y−m:−1)−∇y0 log pi(Y0:k|Y−m′:−1)‖ ≤ ϕm

‖∇y0 log pi(Yk|Y−m:k−1)‖ ≤ ρk ,

where
∑

k ϕk and
∑

k ρk are convergent series.

Assumption 3-4) can be interpreted as a condition on the speed at which past observations are forgotten.

Assumption 3-5) can be interpreted similarly as a forgetting property which involves the derivative of the

log-density of the observations.

For instance, Assumption 3 is simple to verify in case of short-dependency processes. A similar remark

holds for a wide class of Markov chains. More generally, we prove in an extended version of this paper [11]

that Assumption 3 holds for a wide class of hidden Markov models.

B. Error Exponent in the High-Rate Regime

Theorem 2 below states that when the order of the quantizer tends to infinity, the error exponent KN

associated with the NP test in the presence of quantization (4) converges at speed N−2/d to the error

exponent K that one would have obtained in the absence of quantization (1). Loosely speaking, the

approximation

βn,N (α) ' e
−n

(
K− De

N2/d

)
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is valid when both the number n of sensors and the order N of quantization are large, but n À N .

Quantity De represents the (normalized) loss in error exponent between the quantized and the unquantized

cases, in the high-rate quantization regime.

Theorem 2. Under Assumptions 1–3:

1) The following limit exists with probability one under P0:

`(YZ) := lim
k→∞

lim
m→∞

∇y0 log
p0

p1
(Y−m:k) .

Moreover, ‖`(YZ)‖ < C for some constant C.

2) As N tends to infinity, N2/d(K −KN ) converges to a constant De given by

De =
1
2

∫
p0(y)F (y)
ζ(y)2/d

dy , (5)

where F (y) = E0

[
`(YZ)TM(Y0) `(YZ)

∣∣∣ Y0 = y
]

.

The particular situation where measurements (Yk)k≥0 are i.i.d. under both hypotheses was studied by

Gupta and Hero [6]. Expression (5) of De is clearly consistent with the one of [6] in the i.i.d. case.

C. Short Sketch of the Proof

Due to the lack of space, we only provide some of the basic ideas underlying the proof of Theorem 2.

A rigorous proof will be provided in an extended version of this paper [11].

It is straightforward to prove a counterpart of Equation (2) for density pi,N involving coefficients ψ̄i,n.

Consequently, under Assumption 3-4), (log pi,N (ZN,0|ZN,−m,−1))m≥0 is a Cauchy sequence. We denote

its limit by Li,N (ZN,−∞:0). The error exponent associated with the NP test on quantized observations is

then given by KN = K0,N −K1,N where for each i ∈ {0, 1}, Ki,N = E0 [Li,N (ZN,−∞:0)]. First focus

on K1,N and choose a sequence m = m(N) of integers such that N2/d

m6+ε → 0 and m3

N1/d → 0 as N →∞.

We write

K1,N −K1 = E0 [Li,N (ZN,−∞:0)− L1(Y−∞:0)]

= TN + UN + δN ,

where

TN = E0 [log p1,N (ZN,0|ZN,−m:−1)− log p1(ZN,0|ZN,−m:−1)]

UN = E0 [log p1(ZN,0|ZN,−m:−1)− log p1(Y0|Y−m:−1)] .

Under Assumption 3, from properties of the sequence m(N), the remainder δN is a little-o of N−2/d.

The study of TN is based on the following expansion:

TN = E0

[
log

p1,N (ZN,−m:0)
p1(ZN,−m:0)

]
− E0

[
log

p1,N (ZN,−m:−1)
p1(ZN,−m:−1)

]
. (6)
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Plugging the Taylor-Lagrange expansion of function y−m:u 7→ p1(y−m:u) at point ξN (y−m:u) in (3) leads

to the following approximate:

p1,N (ξN,j−m:u)
p1(ξN,j−m:u)

≈ 1 +
1

2N2/d

u∑

k=−m

Tr

(
∇2

yk
p1(ξN,j−m:u)T

p1(ξN,j−m:u)
MN,jk

ζ
2/d
N,jk

)
.

We now plug the above expansion into (6) and approximate TN by a series involving the second term of the

rhs of the above equation. The study of UN is also based on the expansion of function y−m:u 7→ p1(y−m:u)

at point ξN (y−m:u) and leads to a similar approximation. Bounding properly the remainders and using the

fundamental mixing conditions of Assumption 3-5), it can be shown after tedious derivations that N2/dTN

and N2/dUN respectively converge to some constants cT and cU as N → ∞ which can be determined.

Thus, N2/d(K1,N − K1) converges to the sum cT + cU . Proceeding in the same way for the study of

N2/d(K0,N −K0), we prove Theorem 2.

D. Application: Determination of Relevant Quantizers

The asymptotic loss in error exponent De depends on the quantizer through its model point density

ζ and its model covariation profile M . For scalar measurements, we can derive the optimal quantization

rule, which minimizes the loss De. This derivation is more difficult in the vector case.

1) Vector case (d ≥ 2): We first address the case where measurements (Yk)k≥0 are vector-valued.

The determination of optimal high-rate quantization rules implies the joint minimization of expression (5)

w.r.t. both functions ζ and M . Unfortunately, as remarked in [12], it is not known what functions M are

allowable as covariation profiles. The determination of the set of admissible couples (ζ, M) is an open

problem, which is beyond the scope of this paper.

However, when M is fixed, the point density ζ which minimizes De can be easily expressed as a function

of M . Using Hölder’s inequality on (5), it is straightforward to prove that De ≥ 1
2

(∫
[p0(y)F (y)]

d
d+2 dy

) d+2
d

,

where equality is achieved when the point density coincides with:

ζ(y) =
[p0(y)F (y)]

d
d+2

∫
[p0(s)F (s)]

d
d+2 ds

. (7)

In other words, one can easily provide the optimal high-rate quantization rule for a given limiting covari-

ation profile.

Following the approach of [6], let us now focus on the case where M(y) = υ Id, for some υ > 0,

where Id represents the d×d identity matrix. The reason for investigating this case is essentially practical.

Indeed, practical construction of quantizers is usually achieved by means of well-established algorithms,

the most popular of them being the Linde-Buzo-Gray (LBG) algorithm [13] which computes a (nearly)

MSE-optimal N -point quantizer for a given pdf. Gersho [14] made the now widely accepted conjecture

that when N is large, most cells of a d-dimensional MSE-optimal quantizer are approximately congruent

to some tessellating polytope H∗
d . In such a case, M(y) = υ∗d I for all y ∈ Y, where υ∗d is the inertia
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Fig. 1. MSE-optimal 64-cell quantizer (σ = 1)

of H∗
d . For such quantizers, the optimal point density (7) becomes:

ζ(y) =

[
p0(y)F̄ (y)

] d
d+2

∫ [
p0(s)F̄ (s)

] d
d+2 ds

, (8)

where F̄ (y) = E0

[
‖`(YZ)‖2

∣∣∣ Y0 = y
]
.

2) Scalar case (d = 1): We now study the case of real-valued observations. Assume without much

loss of generality that each cell is connected (cells are intervals). In this case, a straightforward derivation

leads to MN (y) = 1/12 for each y and each N . Therefore, function F simplifies to:

F (y) =
1
12
E0

[
`(YZ)2

∣∣∣ Y0 = y
]

and Equation (7) (with d = 1) now provides the optimal high-rate quantization rule. Note that expression (7)

is quite similar to Bennett’s formula [4] which gives the optimal model point density in an MSE perspective.

V. ILLUSTRATION

Consider the following model for each k:

Yk = Xk + Wk , (9)

where Wk
i.i.d∼ CN(0, σ2) represents a zero mean complex circular Gaussian thermal noise with variance

σ2, and where (Xk)k∈Z is a Gaussian process which is white under H0 and correlated (AR-1) under H1.

More precisely,
H0 : Xk

i.i.d∼ CN(0, 1)

H1 : Xk = aXk−1 +
√

1− a2 Uk ,
(10)
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Fig. 2. Optimal 64-cell quantizer (a = 0.8, σ = 1)

where a ∈ (0, 1) is the correlation coefficient and Uk
i.i.d∼ CN(0, 1) is the innovation process. In particular,

(Yk)k∈Z is a white Gaussian process under H0 and is a hidden Markov process under H1, with the particular

property that marginal distribution of single observations are indentical under both hypotheses. We mention

that in the above model, densities have infinite support so that, strictly speaking, the assumptions made in

this paper are not satisfied. Nevertheless, the above model can be slightly modified to be consistent with

our assumptions. For instance, in order that the observations lie in a bounded subset of R2, it is sufficient

to replace the distribution CN(0, 1) of Uk with the corresponding truncated distribution on an arbitrarily

large support. In order to simplify the presentation, we do not go into details and keep model (9)-(10)

with slight abuse.

As the marginal pdf does not depend on the hypothesis, it turns out that Gupta and Hero’s quantizer [6],

which minimizes the error exponent loss in case of i.i.d. observations, is not defined. We compare our

quantization rule to the traditional MSE-optimal quantizer. Figure 1 represents the 64-cells quantizer

computed by the LBG algorithm for pdf p = p0 = p1 with parameter σ = 1. Figure 2 represents the

optimal (8) 64-cells quantizer for a = 0.8 and σ = 1. This optimal quantizer significantly differs from the

MSE-optimal one. Low probability points turn out to be significant for the considered detection problem.

More examples will be provided in an extended version of this paper [11].
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