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Abstract

This paper investigates the problem of secure distributed lossless compression in the presence of arbitrarily

correlated side information at an eavesdropper. This scenario consists of two encoders (referred to as Alice and

Charlie) that wish to reliably transmit their respective (correlated) sources to a legitimate receiver (referred to as

Bob) while satisfying some requirement on the equivocation rate at the eavesdropper (referred to as Eve). Error-free

rate-limited channels are assumed between the encoders and the legitimate receiver, one of which being perfectly

observed by the eavesdropper, which also has access to a correlated source as side information. For instance, this

problem can be seen as a generalization of the well-known Slepian-Wolf problem taking into account the security

requirements. A complete characterization of the compression-equivocation rates region for the case of arbitrarily

correlated sources is derived. It is shown that the statistical differences between the sources can be useful in terms

of secrecy.

I. INTRODUCTION

Consider the problem of compressing correlated sources at sensor nodes in a distributed fashion where the sensors

may wish to communicate with a fusion center on a wireless network. The correlation between the observations can

be used to minimize the rates needed for the communication between the sensors and the fusion center (referred

to as Bob). In addition to this, we assume that the encoders wish to leak the least possible amount of information

about their sources to an eavesdropper (referred to as Eve), e.g. an untrusted sensor, who may observe one of the

channels and capture information during the communication.

The above scenario involves many of the major information-theoretic issues on source and channel coding

problems. In terms of source coding, Slepian and Wolf [1] introduced the problem of distributed lossless com-

pression. This topic has been the focus of intense study and some remarkable progress has already been made in

theoretical and practical aspects. On the other hand, extensive research has been done during the recent years on

secure communications over noisy channels. Shannon in [2] introduced the information-theoretic notion of secrecy,
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where security is measured through the equivocation rate (i.e. the remaining uncertainty about the message) at

the eavesdropper. The wiretap channel was introduced by Wyner [3], who showed that it is possible to send

information at a positive rate with perfect secrecy as long as the channel of the eavesdropper is a degraded version

of the legitimate user’s one. Csiszàr and Körner [4] extend this result to the setting of general broadcast channels

with any arbitrary equivocation rate. Several extensions of the wiretap and fading channels have been done (cf. [5],

[6] and references therein). So far, very few work has been reported on source coding (or compression) problems

with security constraints.

One can identify two approaches in the literature on secure source coding. In fact, it is assumed either that there

already exists a secure rate-limited channel between Alice and Bob, which allows the system to use secret keys, or

the decoders have access to side information about the source. In the scenario of secret key sharing, both lossless and

lossy compression have been studied in various contexts [7]–[12]. For the second scenario where side information

is available at both decoders, the case of lossless and lossy source coding has been recently studied in [13] and [14],

respectively. The distributed compression setup i.e., source coding with coded side information, has been studied

in [15]–[17]. In their “one-sided helper” scenario, Tandon et al. [17] provide a complete characterization of the

achievable region when only one source is to be perfectly estimated, and Eve does not have any side information.

Gunduz et al. [16] study secure compression in a setup similar to the one considered here but they only provide

inner and outer bounds for the achievable region.

In this paper, we investigate the problem of secure distributed lossless compression of memoryless sources in the

presence of an eavesdropper with correlated side information who may observe one of the channels, as it is shown

in Fig. 1. In this setting the channels between encoders and decoders are assumed to be noiseless so that they

cannot provide any advantage to increase security. Our goal is to understand the minimum amount of information

that needs to be revealed to Eve. We provide a complete characterization of the compression-equivocation rates

region for the case of arbitrarily correlated sources.

The organization of this paper is as follows. Section II states definitions along with the main results, while

Section III provides a specialization in case of uncoded side information at Bob. The sketch of the proofs are

relegated to Section IV. Finally, Section V summarizes the paper.

Notation

For any sequence (xi)i∈N∗ , notation xnk stands for the collection (xk, xk+1, . . . , xn). xn1 is simply denoted by xn.

The cardinality of an alphabet is denoted by ‖·‖. Logarithms are taken in base 2 and denoted by log(·). Entropy

is denoted by H(·), and mutual information by I(·; ·). We denote strongly typical and conditional typical sets

by Tnδ (X) and Tnδ (Y |xn) resp., and use the so-called Delta-Convention [18]. Let X , Y and Z be three random

variables on some alphabets with probability distribution p. If p(x|y, z) = p(x|y) for each x, y, z, then X , Y and

Z form a Markov chain, which is denoted by X −
− Y −
− Z.

May 2011 DRAFT



TO BE PRESENTED AT SECURENETS 2011 3

An Alice

Cn Charlie
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Figure 1. Distributed secure lossless compression with side information at the eavesdropper.

II. DEFINITIONS AND MAIN RESULTS

A. Problem Definition

In this section, we give a more rigorous formulation of the context depicted in Fig. 1. Let A, C and E be

three finite sets. Alice, Charlie and Eve observe sequences of random variables (Ai)i∈N∗ , (Ci)i∈N∗ and (Ei)i∈N∗

respectively, which take values on A, C and E , resp. For each i ∈ N∗, random variables Ai, Ci and Ei are distributed

according to the joint distribution p(a, c, e) on A× C × E . Moreover, they are independent across time i.

Definition 1: An (n,RA, RC)-code for distributed compression in this setup is defined by

• An encoding function at Alice fA : An → {1, . . . , 2nRA},

• An encoding function at Charlie fC : Cn → {1, . . . , 2nRC},

• A decoding function at Bob g : {1, . . . , 2nRA} × {1, . . . , 2nRC} → An × Cn.

Definition 2: A tuple (RA, RC ,∆) ∈ R3
+ is said to be achievable if, for any ε > 0, there exists an (n,RA +

ε,RC + ε)-code (fA, fC , g) such that:

Pr {g(fA(An), fC(Cn)) 6= (An, Cn)} ≤ ε ,
1

n
H(An|fA(An), En) ≥ ∆− ε .

The set of all such achievable tuples is denoted by R∗ and is referred to as the compression-equivocation rates

region.

Remark 1: Notice that the equivocation rate used in Definition 2 measures the uncertainty about the source A. In

fact, our results can also apply when considering both sources A and C since the (joint) equivocation rate writes:

1

n
H(AnCn|fA(An), En) =

1

n
H(An|fA(An), En) +

1

n
H(Cn|AnEn) .

Remark 2: Region R∗ is closed and convex.
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Figure 2. Achievable tuples (RA, RC ,∆).

(I)

(II)

RA

RC

Figure 3. Projection on plane ∆ = 0.

B. Main Result

The following theorem provides a single-letter characterization of region R∗.

Theorem 1: Region R∗ writes as the closure of the set of all tuples (RA, RC ,∆) ∈ R3
+ such that there exists

a random variable U on some finite set U verifying the Markov chain U −
− A −
− (C,E), and the following

inequalities:

RA ≥ H(A|C) , (1)

RC ≥ H(C|U) , (2)

RA +RC ≥ H(AC) , (3)

∆ ≤ I(A;C|U)− I(A;E|U) , (4)

The achievability of Theorem 1 is based on random binning at the encoders Alice and Charlie, and joint decoding

at Bob. The detailed proof is relegated to Section IV-A. The above region can also be achieved using a time-sharing

combination of two complementary families of codes. Since this approach may yield better intuition, its proof is

sketched below. The proof of the converse part is given in Section IV-B.

Inequalities (1)–(3) resemble the ones of Slepian and Wolf [1, Section III]. They ensure perfect reconstruction of

both variables A and C at Bob. The sum-rate constraint (3) captures the trade-off between rates RA and RC . The

information must be transmitted by one or the other encoder. As a matter of fact, if there is no secrecy requirement,

setting U = A is optimal, and region R∗ reduces to the Slepian-Wolf’s one [1].

Let us now give some intuition on Equation (4). Depending on the distribution of (A,C,E), variable U can be

tuned to make Bob more capable than Eve i.e., maximize I(A;C|U) − I(A;E|U). This quantity represents the

gain (or the loss) at Eve in terms of equivocation rate. Note that Equation (4) also writes

∆ ≤ H(A|UE)−H(A|UC) .
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The first term H(A|UE) corresponds to the equivocation rate at Eve if she observes both variables U and E. Variable

U is thus considered as a common message i.e., as if Eve could decode it. As a matter of fact, Proposition 2 below

shows that it is also optimal to encode U so that Eve can reliably estimate it.

At the same time, Equation (2) (which writes RC ≥ H(C|A) + I(A;C|U)) imposes a trade-off between the

equivocation rate at Eve ∆ and the rate of Charlie RC . If the secrecy requirement is harsh, more information must

be sent through the private channel (between Charlie and Bob).

The remaining rate of Alice (on the public channel) i.e., H(A|UC), is directly subtracted from the equivocation

rate, meaning that it is treated as “raw” bits of A.

Remark 3: If the side information at Eve E is less noisy than C, then setting U = A is optimal, and hence

Slepian-Wolf coding achieves the whole region.

Sketch of proof of Theorem 1 (Time-sharing combination technique): We first construct two codes achieving

corner points (I) and (II) illustrated in Fig. 2. Each corner point is achieved using a three-step communication

scheme which aim is to reliably deliver variables (U,A) and C to Bob. At each step, the information previously

received (and decoded) is used as side-information at Bob. Random binning a la Slepian-Wolf is performed to take

advantage of this side information. These schemes correspond to the possible combinations of the set {U,A,C},

provided that U and C are decoded prior to A, as summarized in row #2 of Table I. For each scheme, the

equivocation rate at Eve can be characterized following the argument of Appendix IV-A7. After Fourier-Motzkin

elimination and classical manipulation, we can prove that the proposed schemes can achieve corner points (I) and

(II), which coordinates are given in Table I.

As a matter of fact, points (I) and (II) correspond to identical equivocation rate level, say ∆. By a time-sharing

combination of these schemes, each point on segment (I)–(II) is also achievable and presents equivocation rate

∆. Moreover, this segment can be easily described since the quantity RA +RC is identical for both points (I) and

(II) (see Fig. 3).

Segment (I)–(II) defines a region which is delimited by four hyperplanes given by the equations of Theorem 1.

The following proposition gives an upper bound on the cardinality of alphabet U . The proof is given in Appendix A

Proposition 1: In the single-letter characterization of the compression-equivocation rates region R∗ given by

Theorem 1, it suffices to consider sets U such that ‖U‖ ≤ ‖A‖+ 1.

Table I

THE TWO CORNER POINTS.

Corner point (I) (II)

Communication order C, U, A U, C, A

RA H(A|C) I(U ;A) + H(A|UC)

RC H(C) H(C|U)

∆ H(A|UE)−H(A|UC) H(A|UE)−H(A|UC)
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(I)(II)

RA

∆

Figure 4. Projection on the plane RC = 0.

Giving U to Eve is also optimal

With small changes in the proof of Theorem 1, we can prove the following proposition (see Appendix B).

Proposition 2: Region R∗ writes as the closure of the set of all tuples (RA, RC ,∆) ∈ R3
+ such that there exists

a random variable U on some finite set U s.t. U −
−A−
− (C,E) form a Markov chain and

RA ≥
[
I(U ;C)− I(U ;E)

]
+

+H(A|C) ,

RC ≥ H(C|U) ,

RA +RC ≥ H(AC) ,

∆ ≤ I(A;C|U)− I(A;E|U) .

This new single-letter characterization means that it is also optimal to help Eve in decoding the auxiliary variable

U . The corresponding additional rate [I(U ;C)− I(U ;E)]+ does not lead to a lower equivocation rate at Eve. This

should be considered with reference to known results on the wiretap channel [4], [6], where the so called common

message can be chosen so that Eve also decodes it, without changing the achievable region.

III. UNCODED SIDE INFORMATION AT BOB

In this paragraph, we consider the special case when Bob has access to uncoded side information i.e., Bob and

Charlie are collocated, or equivalently RC →∞. The set of all achievable tuples in this setup is defined as:

R∗uncoded = {(RA,∆) : ∃RC s.t. (RA, RC ,∆) ∈ R∗} .

The following corollary (which is a consequence of [14, Theorem 1]) directly follows from Theorem 1, removing

constraints on RC i.e., from the optimality of point (I) (see Fig. 4).

Corollary 1: Region R∗uncoded writes as the closure of the set of all tuples (RA,∆) ∈ R2
+ such that there exists

a random variable U on some finite set U s.t. U −
−A−
− (C,E) form a Markov chain and

RA ≥ H(A|C) , (5)

∆ ≤ I(A;C|U)− I(A;E|U) . (6)
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Remark 4: In case of a noiseless public channel of unlimited capacity i.e., RA → ∞, Prabhakaran and Ram-

chandran studied in [13] the so-called leakage rate, defined as lim inf 1
nI(An; JEn), which equals H(A) − ∆.

Their result “When Bob remains silent” [13, Theorem 1] thus follows as a special case of Corollary 1.

IV. SKETCH OF PROOF OF THEOREM 1

A. Achievability

Let U be a random variable on some finite set U , and (RA, RC ,∆) ∈ R3
+. In this section, we describe a

scheme which achieves tuple (RA, RC ,∆) under some sufficient conditions i.e., for any ε > 0, we construct an

(n,RA + ε,RC + ε)-code (fA, fC , g) such that:

Pr {g(fA(An), fC(Cn)) 6= (An, Cn)} ≤ ε ,
1

n
H(An|fA(An), En) ≥ ∆− ε .

In this scheme, Alice (resp. Charlie) perform random binning on U and A (resp. C). From their bin indices, Bob

jointly decodes variables U and C, then A.

Let ε > 0, R1 > 0, R2 > 0 such that R1 +R2 = RA + ε, and S1 ≥ R1, S2 ≥ R2, SC ≥ RC + ε. Define γ = ε
8 .

1) Codebook Generation at Alice: Randomly pick 2nS1 sequences un(s1) from Tnδ (U) and divide them into

2nR1 equal size bins {B1(r1)}r1∈{1,...,2nR1}. Then, for each codeword un(s1), pick 2nS2 sequences an(s1, s2)

from Tnδ (A|un(s1)) and divide them into 2nR2 equal size bins {B2(s1, r2)}r2∈{1,...,2nR2}.

2) Codebook Generation at Charlie: Randomly pick 2nSC sequences cn(s) from Tnδ (C) and divide them into

2n(RC+ε) equal size bins {BC(r)}r∈{1,...,2n(RC+ε)}.

3) Encoding at Alice: Assume that sequence An is produced at Alice. Look for a codeword un(s1) such that

(un(s1), An) ∈ Tnδ (U,A). Let B1(r1) and B2(s1, r2) be the bins of un(s1) and An = an(s1, s2), respectively.

Alice sends the message J = fA(An) , (r1, r2) on her error-free channel.

4) Encoding at Charlie: Assume that sequence Cn = cn(s) ∈ BC(r) is produced at Charlie. Charlie then sends

the message K = fC(Cn) , r on his error-free channel.

5) Decoding at Bob: Assume that Bob receives J = (r1, r2) from Alice and K = r from Charlie. First

look for the unique jointly typical sequences (un, cn) with bin indices (r1, r) i.e., look for the unique indices

(s1, s) such that (un(s1), cn(s)) ∈ (B1(r1) × BC(r)) ∩ Tnδ (U,C). Then look for the unique index s2 such that

an(s1, s2) ∈ B2(s1, r2)∩Tnδ (A|cn(s)). The estimate g(J,K) is then defined as the decoded tuple (an(s1, s2), cn(s)).

6) Errors and Constraints: Denoting by E the event “An error occurred during the encoding or decoding steps,”

we expand its probability (averaged over the set of all possible codebooks) as follows: Pr {E} ≤ Pt + Pe + Pd,

where each term corresponds to a particular error event, as detailed below. We derive sufficient conditions on the

parameters that make each of these probabilities small.

1) From standard properties of typical sequences [18], there exists a sequence ηn −−−−→
n→∞

0 such that

Pt , Pr {(An, Cn, En) 6∈ Tnδ (A,C,E)} ≤ ηn. Consequently, Pt ≤ γ for some sufficiently large n.
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2) In the first encoding step, Alice needs to find (at least) one codeword un(s1) such that (un(s1), An) ∈

Tnδ (U,A). Using standard properties of typical sequences [18], we can prove that, if S1 > I(U ;A), then the

corresponding error probability vanishes as n tends to infinity, and hence can be upper bounded by γ for

some sufficiently large n.

In the second encoding step, sequence An needs to appear in the 2nS2 codewords an(s1, s2) ∈ Tnδ (A|un(s1)).

If S2 > H(A|U), this step will succeed with a probability larger than 1− γ, for some sufficiently large n.

Similarly, condition SC > H(C) is needed to ensure that the encoding step at Charlie succeeds with a

probability larger than 1− γ.

3) The decoding error probability Pd must be carefully handled. An error occurs when the decoded tuple differ

from the original one (u, a, c). There are three meaningful possible events so that Pd writes:1

Pd , Pr {����(c, u, a)}

= Pr {{�c, ǔ} ∪ {č, �u} ∪ {�c, �u} ∪ {č, ǔ, �a}}

≤ Pr {�c, ǔ}+ Pr {č, �u}+ Pr {�c, �u}+ Pr {č, ǔ, �a} .

We now study each term of the r.h.s. of the above equation:

Pr {�c, ǔ} = Pr
{
∃ s′ 6= s s.t. (un(s1), cn(s′)) ∈ (B1(r1)×BC(r)) ∩ Tnδ (U,C)

}
≤ 2n(SC−RC−ε) Pr

{
(Un, Cn) ∈ Tnδ (U,C)

∣∣∣ Un ∈ Tnδ (U), Cn ∈ Tnδ (C)
}

≤ 2n(SC−RC−ε) 2−n(I(U ;C)−ηn) ,

for some sequence ηn −−−−→
n→∞

0. If SC −RC − ε < I(U ;C), then the above probability vanishes as n tends

to infinity, and hence can be upper bounded by γ for some sufficiently large n.

Similarly, if S1 − R1 < I(U ;C) (resp. S1 − R1 + SC − RC − ε < I(U ;C)), then Pr {�c, ǔ} ≤ γ (resp.

Pr {�c, �u} ≤ γ) for some sufficiently large n.

Pr {č, ǔ, �a} = Pr
{
∃ s′2 6= s2 s.t. an(s1, s

′
2) ∈ B2(s1, r2) ∩ Tnδ (A|cn(s))

}
≤ 2n(S2−R2) Pr

{
(An, Cn) ∈ Tnδ (A,C)

∣∣∣ An ∈ Tnδ (A|un(s1)), Cn ∈ Tnδ (C|un(s1))
}

≤ 2n(S2−R2) 2−n(I(A;C|U)−ηn) ,

for some sequence ηn −−−−→
n→∞

0. If S2 −R2 < I(A;C|U), then the above probability vanishes as n tends to

infinity, and hence Pr{č, ǔ, �a} ≤ γ, for some sufficiently large n.

In this paragraph, we found sufficient conditions that ensure Pr {E} ≤ 8γ i.e.,

Pr {g(fA(An), fC(Cn)) 6= (An, Cn)} ≤ ε, for some sufficiently large n.

1We denote by x̌ the event “Sequence xn has been correctly decoded”, and �x its complement. Same notation holds for tuples.
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7) Equivocation Rate at Eve: The equivocation rate at Eve can be lower bounded as follows:

1

n
H(An|fA(An), En) ≥ 1

n
H(An|r1r2En)

=
1

n

[
H(An|r1En)− I(An; r2|r1En)

]
(a)

≥ 1

n

[
H(An|un(s1)En)−H(r2)

]
(b)

≥ H(A|UE)−R2 ,

where

• step (a) follows from the facts that bin index r1 is a deterministic function of codeword un(s1), bin index r2

is a deterministic function of An, and conditioning reduces the entropy,

• step (b), from the fact that the random variables are i.i.d., and r2 ∈ {1, . . . , 2nR2}.

Condition ∆− ε ≤ H(A|UE)−R2 is thus sufficient to achieve equivocation rate ∆− ε at Eve.

8) End of Proof: In this section, we proved that sufficient conditions for the achievability of a tuple (RA, RC ,∆)

are given by the following system of inequalities, for each ε > 0:

R1 > 0

R2 > 0

RA + ε = R1 +R2

RC ≥ 0

S1 ≥ R1

S2 ≥ R2

SC ≥ RC + ε

S1 > I(U ;A)

S2 > H(A|U)

SC > H(C)

SC −RC − ε < I(U ;C)

S1 −R1 < I(U ;C)

S1 −R1 + SC −RC − ε < I(U ;C)

S2 −R2 < I(A;C|U)

R2 + ∆− ε ≤ H(A|UE)

Fourier-Motzkin elimination then yields:

RA + ε > H(A|C)

RC + ε > H(C|U)

RA +RC + 2ε > H(AC)

∆− ε < I(A;C|U)− I(A;E|U)

This proves the achievability part of Theorem 1.
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B. Converse

Let (RA, RC ,∆) be an achievable tuple and ε > 0. There exists an (n,RA + ε,RC + ε)-code (fA, fC , g) s.t.:

Pr {g(fA(An), fC(Cn)) 6= (An, Cn)} ≤ ε ,
1

n
H(An|fA(An), En) ≥ ∆− ε .

Denote by J = fA(An) and K = fC(Cn) the messages transmitted by Alice and Charlie, respectively. For each

i ∈ {1, . . . , n}, define random variable Ui as follows:

Ui = (J,Cni+1, E
i−1) . (7)

Note that Ui −
−Ai −
− (Ci, Ei) form a Markov chain.

Following the usual technique, we also define an independent random variable Q uniformly distributed over the

set {1, . . . , n}, and A = AQ, C = CQ, E = EQ, U = (Q,UQ). Note that U −
−A−
− (C,E) still form a Markov

chain, and that (A,C,E) is distributed according to the joint distribution p(a, c, e) i.e., the original distribution of

(Ai, Ci, Ei).

1) Rate at Alice: Following the argument of the converse for the Slepian-Wolf theorem [19, Section 15.4.2], we

prove lower bounds on the rates:

n(RA + ε) ≥ H(J)

(a)

≥ H(J |Cn)

(b)
= I(An; J |Cn)

(c)
= H(An|Cn)−H(An|JKCn)

(d)

≥ nH(A|C)− nO(ε) , (8)

where

• step (a) follows from the fact that conditioning reduces the entropy,

• step (b) from J = fA(An),

• step (c) from K = fC(Cn),

• step (d) from the fact that random variables Ai and Ci are i.i.d., and Fano’s inequality2.

2Landau-like notation O(ε) stands for a term X such that 0 ≤ X ≤ kε for some constant k > 0.
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2) Rate at Charlie: Using similar arguments with K = fC(Cn), we can obtain:

n(RC + ε) ≥ H(K)

(a)

≥ H(K|J)

(b)
= I(K;Cn|J)

= H(Cn|J)−H(Cn|JK)

(c)

≥
n∑
i=1

H(Ci|JCni+1)− nO(ε)

(d)

≥
n∑
i=1

H(Ci|Ui)− nO(ε) ,

where

• step (a) follows from the fact that conditioning reduces the entropy,

• step (b) from K = fC(Cn),

• step (c) from the chain rule for conditional entropy, the fact that random variables Ci’s are independent across

time, and Fano’s inequality,

• step (d) from the fact that conditioning reduces the entropy, and definition (7).

Now, using auxiliary random variable Q,

RC + ε ≥ 1

n

n∑
i=1

H(CQ|UQ, Q = i)−O(ε)

= H(C|U)−O(ε) .

3) Sum-Rate: A lower bound on the sum-rate can be derived as well:

n(RA +RC + 2ε) ≥ H(JK)

(a)
= I(AnCn; JK)

= H(AnCn)−H(AnCn|JK)

(b)

≥ nH(AC)− nO(ε) ,

where

• step (a) follows from J = fA(An) and K = fC(Cn),

• step (b) from the fact that random variables Ai and Ci are i.i.d., and Fano’s inequality.

May 2011 DRAFT



TO BE PRESENTED AT SECURENETS 2011 12

4) Equivocation Rate at Eve:

n(∆− ε)

≤ H(An|JEn)

= H(An|JK) + I(An;K|J)− I(An;En|J)

(a)

≤ nO(ε) + I(An;Cn|J)− I(An;En|J)

(b)
= nO(ε) + I(An;Cn)− I(J ;Cn)− I(An;En) + I(J ;En)

(c)
= nO(ε) +

n∑
i=1

[
I(Ai;Ci)− I(JCni+1;Ci)− I(Ai;Ei) + I(JEi−1;Ei)

]
(d)
= nO(ε) +

n∑
i=1

[
I(Ai;Ci)− I(JCni+1;Ci)− I(Ai;Ei) + I(JEi−1;Ei)

+I(Ei;C
n
i+1|JEi−1)− I(Ci;E

i−1|JCni+1)
]

= nO(ε) +

n∑
i=1

[
I(Ai;Ci)− I(JCni+1E

i−1;Ci)− I(Ai;Ei) + I(JCni+1E
i−1;Ei)

]
(e)
= nO(ε) +

n∑
i=1

[
I(Ai;Ci|Ui)− I(Ai;Ei|Ui)

]
,

where

• step (a) follows from Fano’s inequality, and K = fC(Cn),

• step (b) from the Markov chain J −
−An −
− (Cn, En),

• step (c) from the chain rule for mutual information, and the fact that random variables Ai, Ci, and Ei are

independent across time,

• step (d) from Csiszár and Körner equality [4],

• step (e) from definition (7), and the Markov chain Ui −
−Ai −
− (Ci, Ei).

Using auxiliary random variable Q, we can prove that

∆− ε ≤ I(A;C|U)− I(A;E|U) +O(ε) .

C. End of Proof

We proved that, for each achievable tuple (RA, RC ,∆) and each ε > 0, there exists a random variable U such

that U −
−A−
− (C,E) form a Markov chain, and

RA +O(ε) ≥ H(A|C) ,

RC +O(ε) ≥ H(C|U) ,

RA +RC +O(ε) ≥ H(AC) ,

∆−O(ε) ≤ I(A;C|U)− I(A;E|U) .

Letting ε tend to zero proves the converse part of Theorem 1.
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V. SUMMARY AND DISCUSSIONS

The problem of secure distributed compression of memoryless sources in the presence of an eavesdropper with

correlated side information was investigated. A complete characterization of the compression-equivocation rates

region was derived for the case of arbitrarily correlated sources. It was shown that the statistical properties of the

sources can be exploited by the encoders to increase the equivocation rate at the eavesdropper.

As future and on-going work, it would be of interest to extend the results in the present work to the more general

setting in which the legitimate decoder wishes to estimate the sources within certain distortion criteria i.e., secure

distributed lossy source coding in a setup similar to the Berger-Tung one [20].

APPENDIX A

PROOF OF PROPOSITION 1

The proof of Proposition 1 follows standard cardinality bounding arguments [21, Appendix C]. We first rewrite

the inequalities of Theorem 1 involving variable U :

RC ≥ H(C|U) ,

∆ ≤ H(C|U)−H(C|A)− I(A;E|U) .

Then consider the following ‖A‖+ 1 continuous functions of p(a|u):

p(a|u) ,

H(C|U = u) ,

I(A;E|U = u) .

From Fenchel-Eggleston-Carathéodory’s theorem, there exists a random variable U ′ on U ′ with ‖U ′‖ ≤ ‖A‖ + 1

such that p(a), H(C|U), and I(A;E|U) are preserved.

This proves Proposition 1.

APPENDIX B

SKETCH OF PROOF OF PROPOSITION 2

A. Achievability

The proof of the achievability part follows the same argument that Appendix IV-A. A new constraint is added

on the size of each bin B1(r1) to the system of Section IV-A8:

S1 −R1 < I(U ;E) .

This inequality ensures that Eve can reliably decode un(s1) from the bin index r1 and her side information En.

Fourier-Motzkin-Elimination then yields the expected inequalities.
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B. Converse

The proof of the converse part follows the same argument that Appendix IV-B. In particular, definition (7) remains

the same. The only difference lies in the lower bound for the rate:

n(RA + ε) ≥ H(J)

(a)
= I(J ;An|Cn) + I(J ;Cn)

(b)
= H(An|Cn)−H(An|JKCn) + I(J ;Cn)

(c)

≥ −nO(ε) +

n∑
i=1

[
H(Ai|Ci) + I(JCni+1;Ci)

]
(d)
= −nO(ε) +

n∑
i=1

[
H(Ai|Ci) + I(JCni+1;Ci) + I(Ei−1;Ci|JCni+1)− I(Cni+1;Ei|JEi−1)

]
(e)

≥ −nO(ε) +
[ n∑
i=1

H(Ai|Ci) + I(JCni+1E
i−1;Ci)− I(JCni+1E

i−1;Ei)
]

(f)
= −nO(ε) +

n∑
i=1

[
H(Ai|Ci) + I(Ui;Ci)− I(Ui;Ei)

]
,

where

• step (a) follows from J = fA(An),

• step (b) from K = fC(Cn),

• step (c) from Fano’s inequality, the chain rule for conditional mutual information and the fact that random

variables Ai, Ci are independent across time,

• step (d) from Csiszár and Körner equality [4],

• step (e) from the independence of the random variables (Ak)k, (Ck)k and (Ek)k across time and the non-

negativity of mutual information,

• step (f) from definition (7).

Using random variable Q and following the argument of Appendix IV-B, we proved the following lower bound:

R+ ε ≥ H(A|C) + I(U ;C)− I(U ;E)−O(ε) .

Since Equation (8) still holds, we proved the bound on RA given by Proposition 2. Other steps of the proof remain

unchanged.
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